

Biochimica et Biophysica Acta 1418 (1999) 31-38



# Modulation of Ca<sup>2+</sup>-dependent anion secretion by protein kinase C in normal and cystic fibrosis pancreatic duct cells

H.S. Cheng a, W.S. Wong a, K.T. Chan a, X.F. Wang a, Z.D. Wang b, H.C. Chan a,\*

Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Department of Physiology, School of Medicine, Jinan University, Jinan, China

Received 28 September 1998; received in revised form 6 January 1999; accepted 22 January 1999

### Abstract

The study investigated the role of protein kinase C (PKC) in the modulation of agonist-induced  $Ca^{2+}$ -dependent anion secretion by pancreatic duct cells. The short-circuit current ( $I_{SC}$ ) technique was used to examine the effect of PKC activation and inhibition on subsequent ATP, angiotensin II and ionomycin-activated anion secretion by normal (CAPAN-1) and cystic fibrosis (CFPAC-1) pancreatic duct cells. The  $I_{SC}$  responses induced by the  $Ca^{2+}$ -mobilizing agents, which had been previously shown to be attributed to anion secretion, were enhanced in both CAPAN-1 and CFPAC-1 cells by PKC inhibitors, staurosporine, calphostin C or chelerythrine. On the contrary, a PKC activator, phorbol 12-myristate 13-acetate (PMA), was found to suppress the agonist-induced  $I_{SC}$  in CFPAC-1 cells and the ionomycin-induced  $I_{SC}$  in CAPAN-1 cells. An inactive form of PMA,  $4\alpha_D$ -phorbol 12,13-didecanote ( $4\alpha_D$ ), was found to exert insignificant effect on the agonist-induced  $I_{SC}$ , indicating a specific effect of PMA. Our data suggest a role of PKC in modulating agonist-induced  $Ca^{2+}$ -dependent anion secretion by pancreatic duct cells. Therapeutic strategy to augment  $Ca^{2+}$ -activated anion secretion by cystic fibrosis pancreatic duct cells may be achieved by inhibition or down-regulation of PKC. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: PMA; Cl<sup>-</sup> secretion; Pancreatic duct; Cystic fibrosis; PKC

#### 1. Introduction

The cAMP-dependent Cl<sup>-</sup> secretion is defective in cystic fibrosis (CF), a common lethal genetic disease affecting 1 in 2500 of the Caucasian population [1]. Impaired bicarbonate secretion, as well as Cl<sup>-</sup> secretion, underlies the defective fluid secretory response in the cystic fibrosis pancreas [2,3]. Obstruction of ducts by inspissated secretion followed by tissue destruction appears to be the cause of some diseases of the pancreas, including endocrine pancreatic failure

Protein kinase C (PKC) has been implicated in regulating Cl<sup>-</sup> secretion in a number of epithelia [9–16]. However, the role of PKC in modulating epi-

0005-2736/99/\$ – see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: \$0005-2736(99)00011-5

and diabetes. Alternative activation pathways of Cl<sup>-</sup> secretion have been proposed as the basis for therapeutic intervention, and it has been demonstrated that the Ca<sup>2+</sup>-dependent Cl<sup>-</sup> secretion is intact in a number of CF tissues, including the pancreatic duct cells [4,5]. Previous studies [6,7] have also shown that Ca<sup>2+</sup>-mobilizing agents, ATP, AII as well as the Ca<sup>2+</sup> ionophore, ionomycin, stimulate anion secretion across CFPAC-1 cells, a human CF pancreatic duct cell line that displays the CF defect – lacking cAMP-dependent Cl<sup>-</sup> channel activation [8].

<sup>\*</sup> Corresponding author. Fax: +852 2603-5022.

thelial functions or responses has been controversial largely due to its diverse effects on numerous regulatory pathways. While PKC is believed to play a role in regulating cystic fibrosis transmembrane conductance regulator [15,17–20], which has been shown to be a cAMP-activated Cl<sup>-</sup> channel [21], the effects of PKC on Ca<sup>2+</sup>-activated Cl<sup>-</sup> secretion [22–26], as well as volume-sensitive Cl<sup>-</sup> current [27,28], have been noted. The existence of different regulatory pathways in epithelial cells presents a difficulty in elucidating the precise role of PKC in modulating individual regulatory pathway.

The present study has made use of a cell line displaying the CF phenotype, with defective cAMPregulated but intact Ca<sup>2+</sup>-dependent secretory response [8], to investigate the role of PKC in modulating Ca<sup>2+</sup>-dependent pancreatic ductal secretion. We examined the effect of PKC on agonist-induced Ca<sup>2+</sup>-dependent anion secretion by CFPAC-1 cells and compared it to that by a normal pancreatic cell line CAPAN-1 which has been shown to conserve most of the properties of ductal epithelial cells [29,30] and possess apical cAMP-dependent Cl<sup>-</sup> channels which are crucial to pancreatic ductal HCO<sub>3</sub><sup>-</sup> secretion [31,32]. Pancreatic cells were grown on semi-permeable membranes and mounted in Ussing chambers. Electrogenic anion secretion was reflected by the short-circuit current  $(I_{SC})$  measured. Our results indicated that PKC attenuates Ca<sup>2+</sup>-dependent agonist-induced  $I_{SC}$  in both normal and CF cells and that augmentation of the agonist-induced I<sub>SC</sub> in CF cells by PKC inhibitors may have therapeutic potentials.

#### 2. Materials and methods

# 2.1. Materials

Hank's balanced salt solution (HBSS) was purchased from Sigma (St. Louis, MO, USA). Iscove's modified Dulbecco's medium, RPMI 1640 medium and fetal bovine serum (FBS), trypsin-EDTA were supplied by Gibco (New York, USA).

The following drugs were supplied by Sigma (St. Louis, MO, USA): *N*-methyl-D-glucamine (NMDG), calcium gluconate, *N*-2-hydroxethylpiperazine-*N*'-2-ethanesulfonic acid (HEPES), staurosporine, cal-

phostin C, adenosine 5'-triphosphate (ATP), 4αD-phorbol 12,13-didecanote (4αD), ionomycin, Hank's balanced salt solution (HBSS), sodium pyruvate and trypsin. Chelerythrine was purchased from Calbiochem Novabiochem (California, USA). Phorbol 12-myrisate 13-acetate (PMA) was from RBI (Natick, MA, USA).

#### 2.2. Cell culture

Normal and CF pancreatic duct cell lines, CA-PAN-1 and CFPAC-1, were purchased from American Type Culture Collection (Maryland, USA). Culture procedure for CFPAC-1 cells, grown in Iscove's modified Dulbecco's medium supplemented with 10% FBS, has been described previously [6]. CAPAN-1 cells were grown in RPMI 1640 medium with 15% FBS. When cells were disassembled from the culture flask, 0.25% trypsin-EDTA was added with extra care to avoid striking on cell layer directly. Quickly afterwards, less than 1 min, most of the trypsin was removed leaving about 0.5 ml in the flask which was then incubated for 2-3 min. Cells were then resuspended in serum-containing medium with gentle pipetting of the cells to break up the cell aggregations. The suspension was then transferred into a centrifuge tube for spinning at  $800 \times g$  for 5 min to remove any trypsin left. Supernatant was discarded and the cells were resuspended with desirable volume of medium to make up to a final cell concentration of  $1.5 \times 10^6$ / ml. A volume of 0.25 ml of the cell suspension was then plated onto each permeable support (area of 0.45 cm<sup>2</sup>) floating on culture medium and incubated at 37°C with 5%  $CO_2/95\%$   $O_2$  for 4–5 days before  $I_{SC}$ experiments.

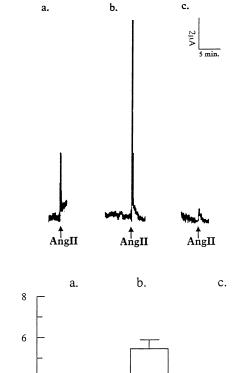
# 2.3. Short-circuit current measurement

The basic principles of the short-circuit current experiments performed in the present study was the same as previously described [33]. Monolayers grown on permeable supports were clamped vertically between two halves of the Ussing chamber and bathed in Krebs–Henseleit (K–H) solutions with following composition (mM): NaCl, 117; KCl, 4.7; MgSO<sub>4</sub>, 1.2; KH<sub>2</sub>PO<sub>4</sub>, 1.2; NaHCO<sub>3</sub>, 24.8; CaCl<sub>2</sub>, 2.56; glucose, 11.1; with an osmolarity of 285 mOsm gassed with 95% O<sub>2</sub> and 5% CO<sub>2</sub>.

All the electrodes were connected to the voltage–current clamp amplifier (DVC-1000, World Precision Instrument, Sarasota, USA). The signal output from the amplifier was the  $I_{\rm SC}$  measured and was recorded on-line by the use of chart-recorder (Kipp and Zonen, Delft, Netherlands). A 0.1-mV voltage pulse was applied intermittently across the epithelium and the transepithelial conductance was calculated from the corresponding current changes.

PMA, ionomycin and staurosporine, chelerythrine and  $4\alpha D$  were dissolved in DMSO. To eliminate the solvent effect, control experiments were performed with equal amounts of DMSO added.

## 2.4. Statistical analysis


Results are expressed as mean  $\pm$  S.E.M. Comparisons between groups of data were carried out using Student's unpaired t-test. A P-value less than 0.05 was considered to be statistically significant.

#### 3. Results

# 3.1. Effects of PKC activator and inhibitor on agonist-induced I<sub>SC</sub> in CF cells

AII (5  $\mu$ M), one of the Ca<sup>2+</sup>-mobilizing agonists, induced a transient rise in  $I_{SC}$  in CFPAC-1 cells (Fig. 1, upper panel). Its stimulating effect was suppressed by a PKC activator, PMA (100 nM), from the control value of  $2.5 \pm 0.3$  to  $0.6 \pm 0.1 \,\mu\text{A/cm}^2$  (P < 0.01) with a total reduction of 76.5% (n = 8, Fig. 1, upper panel). On the contrary, the AII-induced  $I_{SC}$  was increased by a PKC inhibitor, staurosporine (10  $\mu$ M), from 2.5  $\pm$  0.3 to 5.4  $\pm$  0.4  $\mu$ A/cm<sup>2</sup> (P< 0.01) with a total increase of 116.9% (n = 7, Fig. 1, upper panel). To eliminate the possibility of non-specific effect of staurosporine, the effect of another potent PKC inhibitor, calphostin C [34], was also examined. Similar enhancing effect on the AII-induced  $I_{SC}$  was observed (not shown), further indicating the involvement of PKC. Fig. 1 (lower panel) shows the summary of the effects of PMA and staurosporine.

Similar to its inhibitory effect on the AII-induced  $I_{SC}$ , PMA was also found to suppress the ATP-induced  $I_{SC}$  in CFPAC-1 cells, from  $9.2 \pm 0.9$  (n = 6) to  $2.7 \pm 0.5$   $\mu$ A/cm<sup>2</sup> (n = 4, P < 0.01) with a total reduc-



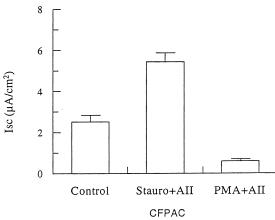



Fig. 1. Effect of PKC inhibitor and activator on the angiotensin II-stimulated  $I_{SC}$  in CFPAC-1 cells. Upper panel:  $I_{SC}$  response to AII (5  $\mu$ M) in control (a), staurosporine (10  $\mu$ M)-treated (b) and PMA (0.1  $\mu$ M)-treated cells (c). Staurosporine and PMA were added 5 min prior to addition of AII (the same for other figures). Lower panel: summary of corresponding results. Staurosporine and PMA are PKC inhibitor and activator, respectively. Potentiating effect was observed with staurosporine while inhibitory effect with PMA. Each *P*-value was obtained when compared to the control. Number of experiments for each column ranges from five to eight.

tion of 71% (Fig. 2). Calphostin C was found to potentiate the ATP-induced  $I_{SC}$  by 64%, from  $9.2\pm0.9$  to  $15.1\pm1.2~\mu\text{A/cm}^2$  (n=4, P<0.01, Fig. 2). A similar potentiating effect on the ATP-induced  $I_{SC}$  with a 56% increase was also observed for chelerythrine, another potent and specific PKC inhibitor [35] as shown in Fig. 3.

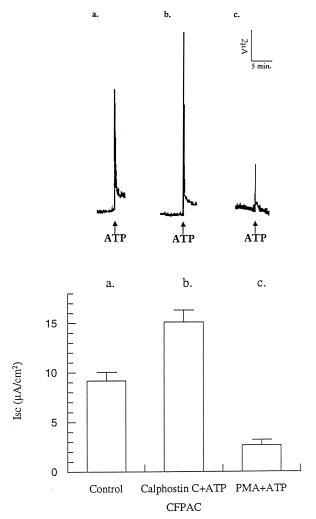



Fig. 2. Effect of PKC inhibitor and activator on the ATP-stimulated  $I_{SC}$  in CFPAC-1 cells. Upper panel:  $I_{SC}$  response to ATP (10  $\mu$ M) in control (a), calphostin C (10  $\mu$ M)-treated (b) and PMA (0.1  $\mu$ M)-treated cells (c). Lower panel: summary of corresponding results. Calphostin C is another PKC inhibitor. Number of experiments ranges from four to six.

To confirm a role of PKC in modulating the Ca<sup>2+</sup>-dependent anion secretion, the effects of PMA and staurosporine on the  $I_{SC}$  induced by a Ca<sup>2+</sup> ionophore, ionomycin (10  $\mu$ M), were also examined. In contrast to AII and ATP, ionomycin induced a biphasic  $I_{SC}$  response with a transient increase followed by a more sustained increase (Fig. 4). PMA was found to suppress the ionomycin-induced  $I_{SC}$  by 91%, from 14.2  $\pm$  1.3 to 1.3  $\pm$  0.4 (n=7, P<0.01, Fig. 4), while staurosporine enhanced it by 83%, from 13.2  $\pm$  0.7 (n=6) to 24.1  $\pm$  2.1  $\mu$ A/cm<sup>2</sup> (n=4, P<0.01, Fig. 5). The specificity of PMA was tested

by examining the effect of its inactive analog,  $4\alpha D$  (1  $\mu M$ ), on the ionomycin-induced  $I_{SC}$ . As shown in Fig. 6,  $4\alpha D$  exerted insignificant effect on the ionomycin-induced  $I_{SC}$ , excluding any non-specific effect of PMA.

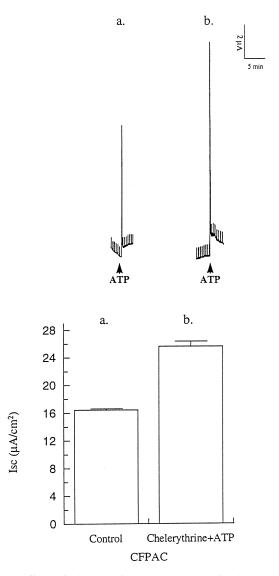
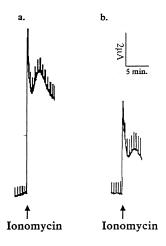




Fig. 3. Effect of chelerythrine on the ATP-stimulated  $I_{SC}$  in CFPAC-1 cells. Upper panel:  $I_{SC}$  response to ATP (10  $\mu$ M) in control (a) and chelerythrine (10 nM)-treated cells (b). Lower panel: summary of corresponding results. Chelerythrine is a newly developed specific inhibitor of PKC. The potentiation of ATP-activated  $I_{SC}$  by chelerythrine mimicked the response in the presence of staurosporine or calphostin C, suggesting that inhibition of PKC indeed enhances  $Ca^{2+}$ -activated anion secretion. Data were obtained from six to eight individual experiments.



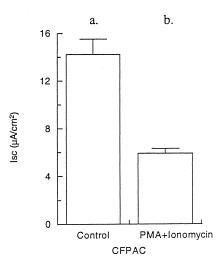



Fig. 4. Effect of PKC activator on the ionomycin-stimulated  $I_{SC}$  in CFPAC-1 cells. Upper panel:  $I_{SC}$  response to the Ca<sup>2+</sup> ionophore, ionomycin (1  $\mu$ M, n = 7) in control (a) and PMA (0.1  $\mu$ M, n = 9)-treated cells (b). Lower panel: summary of corresponding results.

# 3.2. Effects of PKC activator and inhibitor on agonist-induced $I_{SC}$ in CAPAN-1 cells

The effects of PMA and staurosporine on agonist-induced  $I_{SC}$  were also examined in normal pancreatic duct cells, CAPAN-1. AII was found to be ineffective in eliciting any  $I_{SC}$  response in these cells and, therefore, we were unable to assess the effect of PKC on this agonist-induced  $I_{SC}$ . On the contrary, ATP elicited a  $I_{SC}$  response in CAPAN-1 cells similar to that observed in CFPAC-1 cells in that they both were transient in nature (Fig. 7, upper panel). However, the time for the ATP-activated current to return to

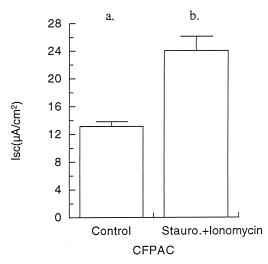



Fig. 5. Effect of PKC inhibitor on the ionomycin-stimulated  $I_{SC}$  in CFPAC-1 cells.  $I_{SC}$  response to the Ca<sup>2+</sup> ionophore, ionomycin (1  $\mu$ M) in control (a) and staurosporine (10  $\mu$ M)-treated cells (b).

the basal level in CAPAN-1 cells was significantly longer. An averaged magnitude of  $14.2\pm1.0~\mu\text{A/cm}^2$  (n=9) was observed for the ATP-induced  $I_{SC}$  in CAPAN-1 cells, which could be increased by staurosporine to  $18.0\pm2.0~\mu\text{A/cm}^{-2}$  (n=4, P<0.01, Fig. 7, lower panel) with a total increase of 27% (n=4). However, the effect of PMA on the ATP-induced  $I_{SC}$  was found to be insignificant in CAPAN-1 cells (Fig. 7).

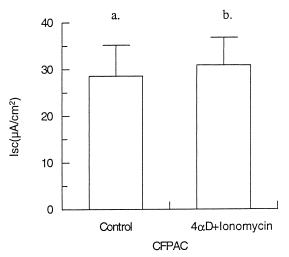



Fig. 6. Demonstration of PKC involvement in CFPAC-1 cells.  $I_{SC}$  response to the Ca<sup>2+</sup> ionophore, ionomycin (1  $\mu$ M, n=4) in control (a) and 4 $\alpha$ D (1  $\mu$ M, n=7)-treated cells (b). 4 $\alpha$ D is an inactive structural analog of PMA. The ineffectiveness of 4 $\alpha$ D on the ionomycin-activated  $I_{SC}$  suggests that the effect of PMA is specifically on PKC.

In contrast to the ionomycin-induced biphasic response observed in CFPAC-1 cells, the ionomycin-induced  $I_{SC}$  response in CAPAN-1 cells was transient with a time course similar to that elicited by ATP in CAPAN-1 cells (Fig. 8, upper panel). The ionomycin-induced  $I_{SC}$  in CAPAN-1 cells was enhanced by staurosporine, from  $16.8 \pm 2.3$  (n = 6) to  $25.8 \pm 1.1$   $\mu$ A/cm<sup>2</sup> (n = 7, P < 0.01) with an increase of 54%, but suppressed by PMA to  $10.6 \pm 1.9$   $\mu$ A/cm<sup>2</sup> (n = 7, Fig. 8) with a 37% reduction.

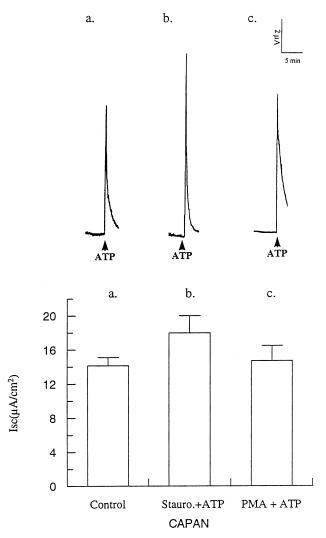



Fig. 7. Effect of PKC inhibitor and activator on the ATP-stimulated  $I_{SC}$  in normal pancreatic duct CAPAN-1 cells. Upper panel:  $I_{SC}$  response to ATP (10  $\mu$ M, n=6) in control (a), staurosporine (20  $\mu$ M, n=7)-treated (b) and PMA (0.1  $\mu$ M, n=7)-treated cells (c). Lower panel: summary of corresponding results.

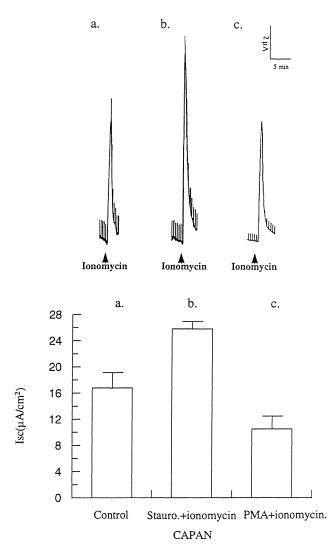



Fig. 8. Effect of PKC inhibitor and activator on the ionomycinstimulated  $I_{SC}$  in normal pancreatic duct CAPAN-1 cells. Upper panel:  $I_{SC}$  response to the Ca<sup>2+</sup> ionophore, ionomycin (1  $\mu$ M, n=9) in control (a), staurosporine (20  $\mu$ M, n=4)treated (b) and PMA (0.1  $\mu$ M, n=7)-treated cells (c). Lower panel: summary of corresponding results.

### 4. Discussion

As described in our previous studies [6,36], both CFPAC-1 and CAPAN-1 cells exhibit a very small basal current which was not altered significantly by different agents examined. Therefore, the present study focused on the agonist-induced  $I_{SC}$ . The effect of AII, ATP as well as ionomycin on anion secretion by CFPAC-1 cells has been studied previously and the involvement of Ca<sup>2+</sup>-dependent mechanism in these agonist-induced responses demonstrated [6,7].

The present study further indicates the presence a Ca<sup>2+</sup>-dependent pathway in both normal and CF pancreatic cells; however, the agonist-induced  $I_{SC}$ responses in these two cell lines were different in a number of aspects. First, the ATP-induced I<sub>SC</sub> response in CAPAN-1 cells lasted significantly longer than that observed in CF cells. Secondly, the ionomycin-induced  $I_{SC}$  response in CF cells was biphasic, while only the transient response was observed in CAPAN-1 cells. Finally, the AII-induced response was only observed in CF but not CAPAN-1 cells. However, it is difficult to assess whether these differences truly reflect the differences between normal and CF pancreatic cells. It is possible that the Ca<sup>2+</sup>-dependent machinery, e.g. receptors, intracellular Ca<sup>2+</sup> pools, in these cell lines may be altered to different extents through the process of transformation.

Despite the apparent differences in the Ca<sup>2+</sup>-dependent responses in the two cell lines, a role of PKC in modulating these responses has been demonstrated in the present study. It is shown that PKC activator, PMA, exerts an inhibitory effect on these agonist-induced I<sub>SC</sub> responses in CFPAC-1 cells. On the other hand, inhibitor of PKC, staurosporine, enhances the  $I_{SC}$  responses. The involvement of PKC in modulating agonist-induced  $I_{SC}$  is indicated by the observations that the inhibitory effect of PMA on the agonist-induced  $I_{SC}$  was not observed using an inactive analog of PMA, 4\alphaD, excluding the nonspecific action of PMA. The enhancing effect of staurosporine was also mimicked by specific PKC inhibitors, calphostin C and chelerythrine, further indicating the involvement of PKC. Since the cAMP-dependent pathway is defective in CFPAC-1 cells, a role of PKC in modulating the Ca<sup>2+</sup>-activated anion secretion is thus clearly demonstrated. Interestingly, similar inhibitory and enhancing effect on the ionomycin-induced I<sub>SC</sub> was also observed with PKC activator and inhibitor, respectively, in CAPAN-1 cells which possess both the cAMP and Ca<sup>2+</sup>-dependent pathways. These results suggest an inhibitory role of PKC in Ca<sup>2+</sup>-dependent pancreatic ductal secretion. PKC could attenuate the Ca2+activated ductal secretion and thereby serve as a turn-off mechanism. This may be achieved by modulating intracellular Ca<sup>2+</sup> store [37] or inactivating the Ca<sup>2+</sup>-activated K<sup>+</sup> channels [38] on which Cl<sup>-</sup> secretion largely depends. In contrast to the previously observed defective regulation of Cl<sup>-</sup> secretion by PKC in CF cells [10,13,14], the modulation of Ca<sup>2+</sup>-dependent anion secretion by PKC appears to operate normally in CF pancreatic duct cells.

The presently observed modulatory effect of PKC on AII and ATP-stimulated anion secretion may be of physiological significance since these agonists have been implicated in the regulation of pancreatic ductal secretion. Several key components of the renin-angiotensin system (RAS) has been demonstrated in the canine pancreas [39]. Immunohistochemical localization and distribution of AII as well as its receptors in the pancreas of rodents have been reported [40,41]. Our previous studies have also demonstrated the presence of AII receptor subtypes as well as the effect of AII on exocrine secretion in CFPAC-1 cells [7]. Taken together, pancreatic ductal secretion may be regulated by a local tissue RAS. On the other hand, release of ATP and/or ADP to activate P2 purinoceptors has been implicated in pancreatic islets to increase the magnitude of insulin response to glucose stimulation [42]. It is possible that ATP released by the acinar cells may also influence ductal cell function. A recently elucidated autocrine mechanism of ATP in regulating anion secretion in numerous epithelial tissues [43] further supports a role of ATP in the regulation of pancreatic ductal secretion [6]. The fact that AII and ATP-stimulated anion secretion are modulated by PKC suggests that PKC may be important in the fine-tuning of Ca<sup>2+</sup>-dependent pancreatic ductal secretion. The potentiating effect exerted by PKC inhibitors on the agonist-induced anion secretion suggests that PKC may be tonically activated in the duct cells or that it may be partially activated by AII and ATP, most likely via a Ca<sup>2+</sup>-dependent mechanism. The augmentation of the Ca<sup>2+</sup>-dependent anion secretion in CF cells by inhibition of PKC may have therapeutic implication since the Ca<sup>2+</sup>-dependent pathway has been proposed as an alternative pathway for circumventing the defective cAMP-dependent anion secretion in CF cells. A recent clinical trial on CF patients using Ca<sup>2+</sup> mobilizing agent, uridine 5'-triphosphate, has been conducted and shown to be effective [44].

In summary, the present study has demonstrated a role of PKC in modulating the Ca<sup>2+</sup>-dependent anion secretion in pancreatic duct cells. Augmentation of anion secretion in CF cells could be achieved

by inhibition or down-regulation of PKC. The signaling mechanism involved in mediating the effect of PKC on Ca<sup>2+</sup>-dependent anion secretion is currently under investigation.

# Acknowledgements

The work was supported by the RGC of Hong Kong and New Asia College of the Chinese University of Hong Kong.

#### References

- [1] M.J. Welsh, Cystic fibrosis, in: S.G. Schultz, T.E. Andreoli, A.M. Brown, D.M. Fambrough, J.F. Hoffman, M.J. Welsh (Eds.), Molecular Biology of Membrane Transport Disorders, Plenum Press, New York, 1996, pp. 605–623.
- [2] K.J. Gaskin, P.R. Durie, M. Corey, P. Wei, G.G. Forstner, Pediatr. Res. 16 (1982) 554–557.
- [3] H. Kopelman, M. Corey, K. Gaskin, P. Durie, Z.V.I. Weizman, G. Forstner, Gastroenterology 95 (1988) 349–355.
- [4] M.A. Gray, J.P. Winpenny, D.J. Porteous, J.R. Dorin, B.E. Argent, Am. J. Physiol. 266 (1994) C213–C221.
- [5] J.P. Winpenny, B. Verdon, H.L. McAlroy, W.H. Colledge, R. Ratcliff, M.J. Evans, M.A. Gray, B.E. Argent, Pflugers Arch. 430 (1995) 26–33.
- [6] H.C. Chan, W.T. Cheung, P.Y. Leung, L.J. Wu, S.B. Cheng Chew, W.H. Ko, P.Y.D. Wong, Am. J. Physiol. 271 (1996) C469–C477.
- [7] H.C. Chan, S.H. Law, P.S. Leung, P.Y.D. Wong, J. Membr. Biol. 156 (1997) 241–249.
- [8] R.A. Schoumacher, J. Ram, M.C. Iannuzzi, N.A. Bardbury, R.W. Wallace, C.T. Hon, D.R. Kelly, S.M. Schmid, F.B. Gelder, T.A. Rado, R.A. Frizzell, Proc. Natl. Acad. Sci. USA 87 (1990) 4012–4016.
- [9] R.A. Barthelson, D.B. Jacoby, J.H. Widdicombe, Am. J. Physiol. 253 (1987) C802–C808.
- [10] R.C. Boucher, E.H.C. Cheng, A.M. Paradiso, M.J. Stutts, M.R. Knowles, H.S. Earp, J. Clin. Invest. 84 (1989) 1424– 1431.
- [11] E.B. Chang, N.S. Wang, M.C. Rao, Am. J. Physiol. 249 (1985) C356–C361.
- [12] M. Donowitz, H.Y. Cheng, G.W.G. Sharp, Am. J. Physiol. 251 (1986) G509–G517.
- [13] T.C. Hwang, L. Lu, P.L. Zeitlin, D.C. Gruenert, R. Huganir, W.B. Guggino, Science 244 (1989) 1351–1353.
- [14] M. Li, J.D. McCann, M.P. Anderson, J.P. Clancy, C.M. Liedtke, A.C. Nairn, P. Greengard, M.J. Welsh, Science 244 (1989) 1353–1356.
- [15] M.R. Picciotto, J.A. Cohn, G. Bertuzzi, P. Greengard, A.C. Nairn, J. Biol. Chem. 267 (1992) 12742–12752.
- [16] M.J. Welsh, Am. J. Physiol. 253 (1987) C825–C834.
- [17] H.A. Berger, S.M. Travis, M.J. Welsh, J. Biol. Chem. 268 (1993) 2037–2047.

- [18] M.C. Dechecchi, A. Tamanini, G. Berton, G. Cabrini, J. Biol. Chem. 268 (1993) 11321–11325.
- [19] J.P. Winpenny, H.L. McAlroy, M.A. Gray, B.E. Argent, Am. J. Physiol. 268 (1995) C823–C828.
- [20] Y. Jia, C.J. Mathews, J.W. Hanrahan, J. Biol. Chem. 272 (1997) 4978–4984.
- [21] C.E. Bear, C. Li, N. Kartner, R.J. Bridges, T.J. Jenson, M. Ramjeesingh, J.R. Riordan, Cell 68 (1992) 809–818.
- [22] U. Kachintorn, P. Vongkovit, M. Vafanaphanich, S. Dinh, K.E. Barrett, K. Pharmsathaphorn, Am. J. Physiol. 262 (1992) C15–C22.
- [23] W.W. Reenstra, Am. J. Physiol. 264 (1993) C161-C168.
- [24] H.C. Chan, F.K. Hon, P.Y.D. Wong, Biol. Reprod. 52 (1995) 638–644.
- [25] X. Li, H. Yu, L.M. Graves, H.S. Barp, J. Biol. Chem. 272 (1997) 14996–15002.
- [26] R. Levin, A. Braiman, Z. Priel, Cell Calcium 21 (1997) 103– 113.
- [27] M.M. Civan, M. Coca-Prados, K. Peterson-Yantorno, Exp. Eye Res. 62 (1996) 627–640.
- [28] C.H. Mitchell, J.J. Zhang, L. Wang, T.J. Jacob, Am. J. Physiol. 272 (1997) C212–C222.
- [29] A.P. Kyriazis, A.A. Kyriazis, D.G. Scarpelli, M.S. Rao, J. Fogh, R. Lepera, Am. J. Pathol. 106 (1982) 250–260.
- [30] J.H. Levrat, C. Palevody, M. Daumas, G. Ratovo, E. Hollande, Int. J. Cancer 42 (1988) 615–621.
- [31] F. Becq, M. Fanjul, I. Mahieu, Z. Berger, M. Gola, E. Hollande, Pflugers Arch. 420 (1992) 46–53.
- [32] F. Becq, E. Hollande, M. Gola, Pflugers Arch. 425 (1993) 1–8.
- [33] H.H. Ussing, K. Zerahn, Acta Physiol. Scand. 23 (1951) 110–127.
- [34] E. Kobayashi, K. Ando, H. Nakanom, T. Lida, H. Ohno, M. Morimoto, T. Tamaoki, J. Antibiot. 42 (1990) 1470– 1474.
- [35] J.M. Herbert, J.M. Augereau, J. Gleye, J.P. Maffrand, Biochem. Biophys. Res. Commun. 172 (1990) 993–999.
- [36] H.S. Cheng, P.Y. Leung, S.B.C. Chew, P.S. Leung, S.Y. Lam, W.S. Wong, Z.D. Wang, H.C. Chan, J. Membr. Biol. 164 (1998) 155–167.
- [37] K. Kitamura, Z. Xiong, N. Teramoto, H. Kuriyama, Pflugers Arch. 421 (1992) 539–551.
- [38] K. Minami, K. Fukuzawa, Y. Nakaya, Biochem. Biophys. Res. Commun. 190 (1993) 263–269.
- [39] M.C. Chappel, A. Milsted, D.I. Diz, K.B. Brosnihan, C.M. Ferrario, J. Hypertens. 9 (1991) 751–759.
- [40] P.S. Leung, H.C. Chan, P.Y.D. Wong, Histochem. J. 29 (1998) 1–5.
- [41] P.S. Leung, H.C. Chan, L.X.M. Fu, P.Y.D. Wong, J. Endocrinol. 153 (1997) 269–274.
- [42] J. Chapal, G. Bertrand, D. Hillaire-Buys, R. Grass, M.M. Loubatieres-Mariani, Can. J. Physiol. 71 (1993) 611–614.
- [43] E.M. Schwiebert, M.E. Egan, T.H. Hwang, S.B. Fulmer, S.S. Allen, G.R. Cutting, W.B. Guggino, Cell 81 (1995) 1063–1073.
- [44] W.D. Bennett, K.N. Olivier, K.L. Zeman, K.W. Hohneker, R.C. Boucher, M.R. Knowles, Am. J. Respir. Crit. Care Med. 153 (1996) 1796–1801.